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Abstract. Here, we intend to introduce a new Fourier Transform.  The well-

known Analytical Fourier Mellin Transform (AFMT) will be defined on 

Clifford Algebra in order to process colored images. The proposed Fourier 

Transform is called Clifford Analytical Fourier Mellin Transform (CAFMT).  

Its magnitude, same as AFMT modulus, is invariant against planar similarities, 

not only on gray level images but also on colored images. Using ACFMT mag-

nitude, we propose a robust watermarking technique in the frequency domain. 

Keywords: Analytical Fourier Mellin Transform, Clifford Transform, and ro-

bust watermarking method. 

1 Introduction  

Nowadays, many techniques are proposed to protect the intellectual property rights of 

multimedia data such as digital watermarking. It consists of embedding a mark into an 

input signal or its Fourier transform. Often, watermarking methods are categorized by 

processing domain and watermark signal type. In all cases, the following constraints 

must be considered: good visual fidelity and robustness of the watermark against 

common image processing geometric attacks are essential. 

Digital image watermarking can be applied in either spatial domain or frequency 

domain or both of them. With the spatial watermarking methods, the image is directly 

manipulated to embed the mark in some pixels. However, the frequency watermarked 

methods decompose initially the image into frequencies coefficients and the embed-

ding is done by changing the transform coefficients. Generally, the embedding pro-

cess and extraction process have common steps and a same frequency transform. Ap-

plying spatial domain watermarking method is easier than the transform domain wa-

termarking method [1]. But, the mark is simpler to detach from cover image by pixel-

wise forgery attack. That’s why, the frequency domain watermarking is mostly used 

than to spatial domain. Since, they give the mark higher robustness and offer re-

sistance to image manipulations [2]. Also, they have a high level of imperceptibility. 

The transforms currently used are: Discrete Cosine Transform (DCT), Discrete Fouri-

er Transform (DFT), Discrete Wavelet Transform, etc. 
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Authors in [3] present efficient method of watermarking using the DCT (Discret 

Cosinus Transform) magnitude. Ruanaidh and al. [4] suggest a robust watermarking 

technique based on the DFT (Discret Fourier Transform) phase. Pereira and Pun in [5] 

propose a robust watermarking algorithm using a new template integrated in image 

able to estimate the geometrical attacks and inverse it before extraction processes. The 

wavelet transform was usually used in image watermarking [6]. First, the original 

image is decomposed into multi subbands which present low and high frequency 

components. after that, the mark is embedded into some subbands.  
In this article, we focus on the frequency watermarking techniques which is based 

on the Fourier transform. This transform allows researchers to extract features that are 

invariant to geometric transformations as rotation, translation and scaling. Several 

invariant descriptors have been proposed in the literature, we can cite, for example, 

the Generic Fourier Descriptors [7] and the Generalized Fourier Descriptors [8]. 

These descriptors are based on the discrete Fourier transform (DFT) which ensures 

the invariance of amplitude to translation. Also, other descriptors called the Mellin 

Analytic Fourier Descriptors have been introduced. They ensure the invariant to rota-

tion and scale transformations by converting the image to polar or log-polar domain 

[9]. These descriptors form a complete family of invariants and have been used usual-

ly for grayscale images or in marginal treatment that consider each colorimetric plane 

separately. 

To avoid this marginal treatment, Sangwine et al. [10] in 2000 proposed the "Qua-

ternionic Color Fourier Transform". Based on this transform, Guo and Zhu [11] intro-

duced the Quaternionic Fourier-Mellin Descriptors. In 2010, Batard et al. [12] pro-

posed a more rigorous mathematical formulation of color transform, called the "Fou-

rier Transform Clifford" and applicable directly to the color images. By analogy with 

the work done by Batard et al. [12], J. Mennesson [13] defined the "Fourier-Mellin 

Clifford Descriptors" that are based both on the Fourier transform Mellin and Clifford 

algebra. These descriptors appeared as a promising tool in the processing of color 

images only for shape recognition. Given the important proprieties of these de-

scriptors, we propose to integrate them into a color watermarking system. 

In this paper, we give an overview of some Fourier transforms used in watermark-

ing technology. Then we will present our new method which is based on Analytical 

Clifford Fourier Mellin Transform. Experimental results will be presented in the sec-

tion 4. We will eventually conclude and suggest some possible perspectives for future 

work. 

2 New watermarking method based on ACFMT 

In this section, we will introduce the Analytical Clifford Fourier Mellin transform. 

This transform will be used later to propose a robust watermarking algorithm against 

geometric attacks. 

Let f denote a function of a grayscale image, represented with polar coordinates (r 

and θ) defined over a compact set of ℝ+
*⤫S1 [14,15]. The Fourier Mellin Transform of 

f is given by: 
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This hypothesis is not justified over ℝ+
*⤫S1. Indeed, the integral diverges near the 

origin as f(0,θ) is generally non-zero. A rigorous approach has been introduced to 

tackle the divergence problem, Ghorbel in [16] suggested computing the FMT of fσ =rσ 

f(r,θ) instead of f(r,θ) where σ is a fixed and strictly positive real number. The 

Analytical Fourier Mellin transform has the following expression: 
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The AFMT presents enormous benefits but it can be computed only on gray level 

images. Quaternion transform and Clifford transform have been proposed to overcome 

this problem. First, the QFT is defined by replacing the imaginary complex i in the 

exponential of the Fourier transform by a pure and unitary quaternion μ belongs to ℍ1. 

A color image is then considered as a function ℝ2 on ℝ 4,0: 

kxbjxvixrxf )()()()(   (4) 

 After that, a pixel of a color image f can be extended as follows: 

4321 0)()()()( eexbexvexrxf   (5) 

Where x = (x1, x2) and r, v and b are respectively the red, green and blue channels 

pixel with coordinates (x1, x2). 

 The CFT generalizes the Color QFT [11]. The CFT is parameterized by a unit 

vector B whose expression is as follows: 
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Where <> represents the scalar product, I4 is the scalar pseudo of ℝ4,0 and B is its 

unit bi-vector. Within the Clifford algebras, a vector can be decomposed into a paral-

lel part and an orthogonal part relative to a bivector B. The above equation can be 

rewritten as follows by this decomposition [13]: 
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In order to combine the CFT with MFT, J. Mennesson in [13] proposed the 

Clifford Fourier Mellin transform. 
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This transform is divergent near the origin. We propose to compute the Analytical 

CFMT with the log-polar sampling (q=ln(r)). The Analytical CFMT that we note 

ACFMT is defined by the following expression: 
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Fig. 1: The visualization of the Analytic Clifford Fourier Mellin transform: 

a) Original image with size of 512⤫512 b) Log-polar mapping of (a) image c) 3D spec-

trum representation of the CFT (parallel part) d) 2D spectrum representation of the CFT (paral-

lel part) e) Phase representation of the CFT (parallel part) f) 3D spectrum representation of the 

CFT (orthogonal part) g) 2D spectrum representation of the CFT (orthogonal part) h) Phase 

representation of the CFT (orthogonal part) 
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Where I4 is the scalar pseudo of ℝ4,0 and B is its unit bi-vector. And f (eq, θ) repre-

sents the log-polar transform of the image f. To simplify the computational complexi-

ty, we use the fast approximation [14]. Figure 1 shows the steps to estimate the Fouri-

er Transform Mellin Clifford Analytics and display the results of each step. 

3 The proposed algorithm 

In this section, we will present our proposed method which done in frequency do-

main. We use the CFT as a Fourier transform applicable directly on color image. With 

the CFT, we avoid a marginal treatment and we ensure that there is not appearance of 

false color. Besides, the mark will be more robust.  

We will use the decomposition of the CFT in order to embed the mark. In [17], we set 

up a small experiment to choose the embedding plane; we embed the mark W in three 

different locations: the parallel part, in the orthogonal part and in both of them. The 

results demonstrate that the emending in the parallel part deteriorate less the percep-

tual image quality. 

Also, to make our method more robust, we used the local Harris features which can 

synchronize the embedded regions and the extracted regions. They provide a potential 

solution for watermarking to improve the robustness [18]. In fact, the interest points 

present a center of circular regions which contains the mark. These same regions may 

be identified in extraction process even after geometric distortions. 

3.1 Embedding process 

In Figure 2, we present the general diagram of our watermarking method. The 

embedding process has the following steps: 

• Transform the image to gray scale image to detect the interest points. 

• Generate some non-overlapped interest regions. 

• Generate a bitmap, denoted ξ, which contains "1" if the block B(i) of  
B

f


 
is 

valid i.e the block has a bit of the watermark. The validity condition is 

compute by the next steps: 

- ACFMT is applied to each selected block 

- Two mid-frequency coefficients are selected, |Q(ki, lj)| and |Q(kn,lm)| :  

If |Q(ki, lj)| > Q(kn, lm)|+p,   

So ξ(i) ← 1; the Block B(i) is valid.  

Else 

 ξ(i) ← 0.  

End if 

Where p is a marginal noise, in the experiment p = 0.5. 

• Generate the mark W, {Wi, i = 0...N}. Its size is the number of “1” in the 

map. In order to overcome the corruption of the mark due to attacks, we use 

the Hamming code as an error correcting codes. So, the watermark is divided 
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into some words, each word contains 4 bits. The Hamming code is then 

applied to each word to generate (7-4) single bit error correcting code. The 

use of error-correction codes ensures a better-quality signal at the receiver 

[19]. 

 
Fig. 2 : Embedding process 

• Embed the mark in valid regions, each region will contain one bit. To do that, 

we modified |Q(ki, lj)| and |Q(kn,lm)| and denoted the watermarked coefficients 

by |Q’(ki, lj)| and |Q’(kn,lm)|, we apply the fellow steps:  

If ξ(i) =1  

Apply the ACFMT; 

If W(i) =1 So  

|Q'(ki, lj)| = |Q(kn,lm)|  and |Q'(kn,lm)|= |Q(k1,l1)|; (we permute |Q(ki, 

lj)| and |Q(kn,lm)|)  

Else 

|Q'(ki, lj)| = |Q(ki, lj)|  and |Q'(kn,lm)|= |Q(kn,lm)|; 

Endif 

Apply the Inverse of ACFMT on each block. 

Else 
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Pass to the next region;  

Endif 

• The watermarked image fw is then obtained by combining the watermarked 

blocks with the others blocks. 

3.2 Extraction process 

The first steps of the extraction process are the same steps to those in embedding 

process. With the presence of the secret key and the map ξ, we can specify which 

blocks are watermarked. So, when ξ(i) = 1, we transform B(i) to ACFM domain. The 

watermark is extracted by the following equation:  

W’ =      1 , Q'(kn,lm)|  > |Q'(ki, lj)|   

           0 , Q'(kn,lm)| < |Q'(ki, lj)|  (10) 

4 Experimental results 

For all tests, we chose |Q(ki=3, lj=2)| and |Q(kn=1, lm=4)| as two mi-frequency coef-

ficients of ACFMT. They have been modified to carry one-bit watermark in each 

region. 

We used the PSNR (Peak Signal Noise Ratio) to measure imperceptibility of the 

mark. Figure 3 and 4 show the obtained result after the insertion of the mark in the 

parallel plane. 

  
(a) (b) 

Fig. 3 : Visual quality experiment (a) originale image, (b) watermarked image where PSNR 

= 38.44 dB 

  
(a) (b) 

Fig. 4 : Visual quality experiment (a) originale image (reference 6106), (b) watermarked im-

age where PSNR = 47.55 dB 
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The value of the PSNR is depending on the number of interest regions modified. In fact, it 

decreases when the size of the mark increases. 
To evaluate the robustness of the proposed algorithm, we compute the Bit Error Rate. 

It presents the ratio between the numbers of incorrect bits transmitted to the total 

number of bits. The following table describes the error rate of mark estimation after 

some attacks on the image "Lena" and some images taken from the BSD300 set (The 

Berkeley Segmentation Dataset). 

Table  1. Error rate after some geometric attacks applied on “Lena” image. 

 

Image reference 

/ Attacks 
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2
8

0
8

3
 

3
5

0
4

9
 

Rotation 1° 0,3 0 0 0,1 0,1 0 0,1 0,1 0 0 

Rotation 5° 0.2 0.2 0 0.3 0.2 0 0 0 0.2 0 

Rotation 10° 0.3 0.3 0 0.1 0.1 0.1 0 0 0 0.2 

Translation 1 (5,5) 0 0 0 0 0 0 0 0.2 0 0 

Translation 2 (1,3) 0 0 0 0 0 0.1 0 0 0.1 0 

Scaling 0,7 0.3 0 0.1 0.2 0.1 0.1 0.2 0 0 0.1 

Scaling 0,9 0.2 0 0.1 0.2 0 0 0 0.3 0 0 

Scaling 1,1 0 0 0 0.2 0.1 1 0 0 0 0.2 

The proposed method is robust since the amplitude of the Fourier transform is in-

variant against translation and scaling. Also, it is robust against rotation since the 

insertion takes place after log-polar mapping. 

The zero value of BER indicates that the mark extracted correctly. However, the 

higher value of BER is 0.3 which indicates that there is a fail in detection process. 

This fail comes from the fact that the set of points changes after geometric attacks. 

5 Conclusion and perspectives   

In this paper, we introduced a new method of invisible watermarking based on 

ACFMT. The proposed algorithm is robust against geometric attacks because we 

synchronize the mark with the image content by embedding the mark in interest 

regions. The mark is imperceptible as it is inserted into the parallel part 
B

f


of the 

Clifford Transform. The BER values showed that our scheme is effective in watermark 

recovering. But, its payload depends on the number of valid interest regions 



9 

Future work will aim to extend it to enhance the robustness and to ensure that the 

mark can be extracted fairly accurately. Also, we will study the robustness against 

compression attacks. 
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